

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Astrochem 0.7-beta documentation

Welcome to Astrochem’s documentation

Contents:

	Astrochem documentation manual
	What is Astrochem?

	The model

	Using Astrochem

	Input and source files

	Chemical networks

	Output files

	Running Astrochem in parallel

	Calling Astrochem from another code

	Astrochem authors

	Contributing to Astrochem

	Astrochem C API reference
	Types

	Functions

	Astrochem Python Module reference
	Tools (astrochem.tools)

	Wrapper (astrochem.wrapper)

 Copyright 2015, Sébastien Maret.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Astrochem 0.7-beta documentation

Astrochem documentation manual

What is Astrochem?

Astrochem is a code to compute the abundances of chemical species in
the interstellar medium, as function of time. It is designed to study
the chemistry in a variety of astronomical objects, including diffuse
clouds, dense clouds, photodissociation regions, prestellar cores,
protostars, and protostellar disks [1]. Astrochem reads a network of
chemical reactions from a text file, builds a system of kinetic rates
equations, and solves it using a state-of-the-art stiff ordinary
differential equations (ODE) solver. The Jacobian matrix of the system
is computed implicitly, so the resolution of the system is extremely
fast: large networks containing several thousands of reactions are
usually solved in a few seconds. In addition, Astrochem may be run in
parallel on multi-cores and or multi-CPU computers. A variety of gas
phase process are considered, as well as simple gas-grain
interactions, such as freeze-out and desorption via several mechanisms
(thermal desorption, cosmic-ray desorption and photo-desorption). The
computed abundances are written in a HDF5 file, and can be plotted in
different ways with the tools provided with Astrochem. Chemical
reactions and their rates are written in a format which is meant to be
easy to read and to edit. A tool to convert chemical networks from the
OSU [http://www.physics.ohio-state.edu/~eric/research.html] and
KIDA [http://kida.obs.u-bordeaux1.fr/] databases into this format
is provided. Astrochem is written in C, and its source code is
distributed under the terms of the GNU General Public License (GPL) [http://www.gnu.org/copyleft/gpl.html].

This manual documents Astrochem. It is organized as follows. The model
is described in section The model. The various chemical
processes considered in the code and the underlying assumptions are
discussed in this section. Astrochem usage is described in section
Using Astrochem. This section is written as a tutorial: the
different steps needed to computed abundances with Astrochem for a
simple case are described. Section Input and source files gives
a comprehensive description of Astrochem input and source model files,
while section Chemical networks presents the file format
used for chemical networks in Astrochem, as well as the different
networks that are provided with the code. Running Astrochem in parallel
explains how to run Astrochem in
parallel. Calling Astrochem from another code details how to use the C and
Python APIs. Finally, Appendix Astrochem authors gives a
list of Astrochem authors, and Appendix Contributing to Astrochem
explains how you can contribute to the project.

The model

Abundances in the interstellar medium are usually described by a
system of kinetic equations. For example, let us consider the
\(\mathrm{HCO^{+}}\) ion. In the dense interstellar medium, this
ion is mainly formed through the reaction:

\[\mathrm{H_{3}^{+} + CO \rightarrow HCO^{+} + H_{2}}\]

with a rate \(k_{1}\) (in \(\mathrm{cm^{3} \, s^{-1}}\)
units). \(\mathrm{HCO^{+}}\) it is destroyed principally through
the following reaction:

\[\mathrm{HCO^{+} + e^{-} \rightarrow H + CO}\]

with a rate constant \(k_{2}\). If we neglect other formation and
destruction channels, the derivative of the \(\mathrm{HCO^{+}}\)
density – i.e. the number of \(\mathrm{HCO^{+}}\) per volume unit
that we note \({n(\mathrm{HCO^{+}})}\) in the following – writes
as:

\[\frac{d{n(\mathrm{HCO^{+}})}}{dt} = k_{1} \,
{n(\mathrm{H_{3}^{+}})} \, {n(\mathrm{CO})}
 - k_{2} \, {n(\mathrm{HCO^{+}})} \, {n(\mathrm{e^{-}})}\]

Similar kinetic equations can be written for all species; therefore to
compute the abundances as a function of time, one need to solve a system
of \(n_\mathrm{s}\) equations for a set of initial conditions, with
\(n_\mathrm{s}\) the number of species in the chemical network.
These are ordinary differential equations (ODE), that may be solved by
different techniques (Euler method, Runge-Kutta method, etc.). One
difficulty is that the ODE system is usually stiff, because of the
different timescales considered in the code; for example,
neutral-neutral reactions are typically several orders of magnitude
slower than a ion-neutral reactions. Another characteristic of the
system is that it is sparse; many species do not react together,
resulting in a large number of zeros in the Jacobian matrix of the
system [2].

Astrochem reads a set of reactions from a text file (see
Chemical networks for a description a chemical network
files), build-up the system of kinetic equation and solve them using
the CVODE [https://computation.llnl.gov/casc/sundials/description/description.html#descr_cvode]
solver from the SUNDIALS library [https://computation.llnl.gov/casc/sundials/main.html]. CVODE uses
the Backward Differentiation formula (BDF method) with a variable
step-size, which is suitable for stiff systems. The resulting system
of linear equations is solved using the Newton iteration. The Jacobian
matrix of the system is computed explicitly to speed-up the
computations. In addition, Astrochem may be run in parallel on multi
core/CPU computers (see Running Astrochem in parallel). Astrochem
includes a number of gas-phase chemical processes as well as gas-grain
interactions that we describe in the following.

Gas-phase processes

Gas-phase reactions

Most gas-phase reactions have rates that can be described by an Ahrrenus
law:

(1)\[k = \alpha \left(\frac{T}{300} \right)^\beta \mathrm{exp}
 \left(-\frac{\gamma}{T} \right)\]

where \(T\) is the gas temperature, and \(\alpha\),
\(\beta\) and \(\gamma\) are the rate constants. Usually
\(\gamma\) corresponds to the energy barrier of the reaction,
expressed in Kelvins. It is generally equal to zero for ion-neutral
reactions, and equal or greater than zero for neutral-neutral reactions.
The units of \(k\) depends on the order of the reaction: for a two
body reaction, which is of the second order, these are
\(\mathrm{cm^{3} \, s^{-1}}\).

Astrochem reads the \(\alpha\), \(\beta\) and \(\gamma\)
constants from the chemical network file (see
Network file format for a description of the network file
format). The formation rate of each products of a given reaction is then
computed by multiplying the densities of the reactants by \(k\).
Similarly the destruction rate of each reactant is computed by
multiplying the densities of the reactants by \(k\). Reactions in
Astrochem may have up to three reactants, and four products.

Cosmic-ray ionization

Cosmic-ray particles can ionize molecules and atoms. This may happen
in a direct or indirect fashion. In the first case, the molecule (in
general \(\mathrm{H_{2}}\)) is ionized by a direct interaction
with the cosmic-ray particle. In the second case, the particle first
ionizes \(\mathrm{H_{2}}\), forming \(\mathrm{H_{2}^{+}}\) and
an electron. The electron then recombines with \(\mathrm{H_{2}^{+}}\)
and emit a UV photon. This secondary UV photon may then ionize
other molecules or atoms. Astrochem assumes that the rate for these
(either direct of indirect) cosmic-ray ionization reactions scale with
the \(\mathrm{H_{2}}\) ionization rate \(\zeta\), such as:

(2)\[k = \alpha \, \zeta\]

The value of \(\zeta\) is read from the input file (see
Input file). Typical values are comprised between
\(10^{-17}\) and \(10^{-17} \, \mathrm{s^{-1}}\). Note that in
this case the units of \(k\) are \(\mathrm{s^{-1}}\) because
cosmic-ray ionization reactions are of the first order.

Photo-ionization and photo-dissociation

UV photons from nearby stars may also dissociate and ionize molecules
and atoms. For sources with a plane-parallel or spherical symmetry, the
ionization or dissociation rate may be written as:

(3)\[k = \alpha \, \mathrm{exp} \left(-\gamma A_{v} \right) \, \chi\]

where \(A_{v}\) is the visual extinction in magnitude, and
\(\chi\) is the external UV flux in units of the standard Draine
interstellar radiation field (Draine, 1978) [http://adsabs.harvard.edu/abs/1978ApJS...36..595D].

This formulation implicitly assumes that the external radiation field
has the same spectral shape than the the ISRF. In addition the
self-shielding of species that dissociate through a line process is
neglected.

Gas-grain interactions

\(\mathrm{H_{2}}\) formation on grains

In the interstellar medium \(\mathrm{H_{2}}\) is mainly formed on
dust grains . The process is complex and involves the absorption of an
H atom in a grain site, the tunneling of the H atom from one site to
the other, and the reaction with another \(\mathrm{H}\) to form \(\mathrm{H_{2}}\).
The energy released during the reactions causes the evaporation of the \(\mathrm{H_{2}}\)
molecule, which returns to the gas phase. Astrochem uses a simple treatment of this process.
We assume that each H atom that strikes a grain forms \(\mathrm{H_{2}}\)
with a given efficiency. Under this assumption, the formation rate of \(\mathrm{H_{2}}\)
on the grains is given by:

\[\frac{\mathrm{d} {n(\mathrm{H_{2}})}}{\mathrm{d} t} = k \, {n(\mathrm{H})}\]

with:

(4)\[k = \alpha \left(\frac{T}{300} \right)^\beta\]

The value of \(k\) may be estimated by assuming that the
efficiency of the process is close to 1 (i.e. that each atom
\(\mathrm{H}\) that strikes a grain forms an
\(\mathrm{H_{2}}\)). The rate coefficient is then simply
1/2 of the collision rate between H atoms and grains. For
0.1 \(\mathrm{\mu m}\) olivine grains and gas-to-dust mass
ratio of 100, we obtain a value of \(\sim 10^{-17} \, \mathrm{s^{-1}}\)
at 10 K. This is close to the value of \(5 \times 10^{-17} \, \mathrm{s^{-1}}\)
determined observationally by Jura (1974) [http://adsabs.harvard.edu/abs/1974ApJ...191..375J]. However,
because of the numerous uncertainties associated with the formation of
\(\mathrm{H_{2}}\), in Astrochem the rate is not computed in this
fashion. Instead we use the \(\alpha\) and \(\beta\) values
from the network file, and compute it with the equation above.

It is important to note that although the formation of \(\mathrm{H_{2}}\) is
a two body reaction – if we forget about the grain that only works as
a catalyst – this reaction has a first order kinetics: the formation
rate of \(\mathrm{H_{2}}\) depends on \({n(\mathrm{H})}\) and not on
\({n(\mathrm{H})}^{2}\). Because of this, the reaction has its own
type number, 0 (see Reaction type numbers). At present the
formation of \(\mathrm{H_{2}}\) on grains is the only grain surface
reaction that is considered in Astrochem.

Electron attachment and ion recombination on grains

Warning

Starting from version 0.x, the electron attachement and ion
recombination on grains are computed in a different fashion (see
below). Networks used with previous versions of Astrochem need to
be updated accordingly.

Electron can hit grains and charge them. Cations may also hit grains
and recombine. For example, let us consider the following reactions:

\[\mathrm{grain} + e^{-} \rightarrow \mathrm{grain}^{-}\]

\[\mathrm{C^{+}} + \mathrm{grain}^{-} \rightarrow \mathrm{C} + \mathrm{grain}\]

The formation rate of negatively charged grains writes as:

\[\frac{d {n(\mathrm{grain^{-}})}}{\mathrm{d}t} = k_{1} \, {n(\mathrm{grain})} \, {n(\mathrm{e^{-}})}\]

while the recombination rate of \(\mathrm{C^{+}}\) on negatively
charged grains is:

\[\frac{d {n(\mathrm{C^{+}})}}{\mathrm{d}t} = - k_{2} \, {n(\mathrm{grain^{-}})} \, {n(\mathrm{C^{+}})}\]

For neutral grains, the electron attachement rate \(k_{1}\) is
given by the following expression
(Semenov, Wiebe & Henning, 2004 [http://adsabs.harvard.edu/abs/2004A%26A...417...93S])

(5)\[k = S \, \pi r_{d}^2 \, v_{th}\]

with:

(6)\[S = 1.329 \times \mathrm{exp} \left(-\frac{T_{d}}{20} \right)\]

and:

(7)\[v_{th} = \left(\frac{8 k_{B} T_{d}}{\pi m_{e}} \right)^{1/2}\]

Here \(S\) is the sticking coefficient (comprised between 0 and 1)
of electrons on the grains, \(v_\mathrm{th}\) is the thermal
velocity of the electrons, \(T_{d}\) is the grain temperature, and
\(m_{e}\) is the electron mass. Note that the sticking coefficient
is assumed to decrease exponentially with the temperature, so that for
\(T_{d} \lt 20\), it is close to 0.5, and is essentially 0 at
higher dust temperatures.

For charged grains, the expression above is multiplied by a factor
correcting for the long-distance Coulomb attraction:

(8)\[C_{ion} = 1 + \frac{e^{2}}{k_{B} \, r_{d} \, T}\]

where \(e\) is the electron charge (in statcoulombs), and
\(r_{d}\) is the grain radius.

For neutral grains, the cation recombination rate \(k_{2}\) is
computed from the following expression:

(9)\[k = \alpha \, \pi r_{d}^2 \, v_{th}\]

where \(\alpha\) is the (dimensionless) branching ratio for
dissociative recombinations. For negatively charged grains the
expression above is multiplied by \(C_{ion}\).

Note that Astrochem considers singly charged (either positively or
negatively) charged grains only; multiply charged grains are
neglected.

Depletion

Molecules may accrete on dust grains and freeze-out (a process often
called depletion). The formation rate of e.g. ices CO on the grains
through this process is given by:

\[\frac{\mathrm{d}{n(\mathrm{CO_{ice}})}}{\mathrm{d}t} = k \, {n(\mathrm{CO})}\]

with:

(10)\[k = S \, \pi r_{d}^2 \, v_{th} \, n_{d}\]

and:

(11)\[v_{th} = \left(\frac{8 k_{B} T_{d}}{\pi m} \right)^{1/2}\]

Here \(S\) is the sticking coefficient of the molecule on the
grain, \(n_{d}\) is the total grain density (neutral + charged)
and \(m\) is the mass of the accreting species (Bergin et
al., 1995) [http://adsabs.harvard.edu/abs/1995ApJ...441..222B].

Because no grain destruction or formation mechanisms are considered in
Astrochem, \(n_{d}\) does not varies with time. It is therefore
computed from the initial abundances of neutral and charged grains
given in the input file (see Initial abundances). The grain
size \(r_{d}\) is also read from this file. Both \(S\) and
\(m\) are read from the network file.

Thermal desorption

Once frozen on the dust grains, molecules may evaporate through thermal
or non-thermal processes. The formation rate of gaseous CO by CO ices
thermal evaporation is:

\[\frac{\mathrm{d}{n(\mathrm{CO})}}{\mathrm{d}t} = k \, {n(\mathrm{CO_{ice}})}\]

where \(k\) is given by the Polanyi-Wigner equation:

(12)\[k = \nu_{0} \, \mathrm{exp} \left(- \frac{E_{B}}{T_{d}} \right)\]

with:

\[\nu_{0} = \left(\frac{2 N_{S} E_{B}}{\pi^2 m} \right)^{1/2}\]

Here \(\nu_{0}\) is the characteristic vibrational frequency of
the desorbing species, \(E_{B}\) is the binding energy of the
desorbing species on the grain surface expressed in Kelvins and
\(N_{S}\) is the number of sites per unit surface assumed to be
\(\mathrm{3 \times 10^{15} \, cm^{-2}}\) (Hasegawa et al., 1992) [http://adsabs.harvard.edu/abs/1992ApJS...82..167H]. The values of
\(E_{b}\) and \(m\) are both read from the network file.

Cosmic-ray desorption

As mentioned above, ices may also evaporate by non-thermal processes.
For example, cosmic-rays may desorb molecules from grains, either by
creating hot-spots on the grain surfaces, or by heating the whole
grains Leger et al. (1985) [http://adsabs.harvard.edu/abs/1985A%26A...144..147L]. Because the
energy deposited in a grain varies as \(Z^{2}\), cosmic-ray
desorption in mainly caused by heavy cosmic-ray ions, such as
Fe. Leger et al. (1985) [http://adsabs.harvard.edu/abs/1985A%26A...144..147L] suggested that
desorption by spot-heating dominates over desorption by whole-grain
heating for grains smaller than 2.5 \(\mathrm{\mu m}\). However,
recent molecular dynamics simulations indicate that for 0.1
\(\mathrm{\mu m}\) grains the whole grain heating contribution is
small (Bringa and Johnson, 2004) [http://adsabs.harvard.edu/abs/2004ApJ...603..159B].

Because of the uncertainties on this process, two different treatments
are implemented in Astrochem. First, cosmic-ray desorption rates can
be computed following Hasegawa and Herbst (1993) [http://adsabs.harvard.edu/abs/1993MNRAS.263..589H], who assume that
desorption occurs mostly through whole-grain heating; when impacting
grains, heavy cosmic-ray ions are assumed to impulsively heat the
grains to a peak temperature of 70K, at which most of the desorption
occurs. The rate is then similar to that of thermal desorption:

(13)\[k = f \, \nu_{0} \, \mathrm{exp} \left(-\frac{E_{B}}{70} \right)\]

where \(f\) is the fraction of the time spent by a grain in the
vicinity of 70 K between two cosmic-ray heating events, assumed to be
\(3.16 \times 10^{-19}\) (Hasegawa and Herbst ,1993) [http://adsabs.harvard.edu/abs/1993MNRAS.263..589H].

Alternatively, the cosmic-ray desorption rate of any specie can be
given explicitly in the network file. This allows for the use of the
cosmic-ray desorption rates that have been computed and/or measured
for some species (e.g. \(\mathrm{H_{2}O}\) and
\(\mathrm{CO}\); Bringa and Johnson, 2004 [http://adsabs.harvard.edu/abs/2004ApJ...603..159B]) . The user can
specify in the network file which treatment to use for each species
(see Physical meaning of the rate constants used in chemical networks). Note that no scaling of \(k\)
with the cosmic ray ionization rate is performed.

Photo-desorption

Photo-desorption (i.e. desorption by UV photons) is another non-thermal
desorption process. UV photons can originate in the ISRF, or in the
ionization of H\(_{2}\) by cosmic-rays followed by recombination
(secondary UV photons). At present only photo-desorption from ISRF UV
photons is implemented in Astrochem.

The photo-desorption rate of CO is for example
(Öberg et al., 2009a [http://adsabs.harvard.edu/abs/2009A%26A...496..281O],
b [http://adsabs.harvard.edu/abs/2009ApJ...693.1209O]):

\[\frac{\mathrm{d} {n(\mathrm{CO})}}{\mathrm{d} t} = k\]

with:

(14)\[k = \chi \, I_\mathrm{ISRF,FUV} \, \mathrm{exp} \left(-2 A_{v} \right) \,
 \pi r_{d}^{2} \, n_{d} \, Y_\mathrm{PD}\]

Here \(I_\mathrm{ISRF,FUV}\) is the standard interstellar
radiation field in the FUV (assumed to be \(\mathrm{1.7 \times
10^{8} \, photons \, cm^{−2} \, s^{−1}}\); Draine, 1978 [http://adsabs.harvard.edu/abs/1978ApJS...36..595D]), and
\(Y_\mathrm{PD}\) is the photo-desorption yield, i.e. the number
of molecules ejected per incident photon. The latter is given by:

\[Y_\mathrm{PD} = Y_{0} \left[1 - \mathrm{exp} \left(-x / l \right)
\right]\]

where \(x\) is the ice thickness of the considered species expressed
in monolayers (ML), \(l\) is the diffusion length in ML, and
\(Y_{0}\) is the photo-desorption yield for thick ices (i.e.
\(x \gg l\)). Typical values for \(Y_{0}\) and \(l\) are
\(\mathrm{10^{-3} \, molecules \, photon^{-1}}\) and 2 ML,
respectively [5]. The density of e.g. CO ices is given by:

\[x = \frac{{n(\mathrm{CO_{ice}})}}{N_{s} \, \pi r_{d}^2 \, n_{d}}\]

It is interesting to note that for thick ices, photo-desorption is
zeroth order process: the desorption rate does not depends on the amount
of e.g. CO ices on the grains. This because UV photons can penetrate
only the first ices monolayers; the bulk of ice is not affected. On the
other hand, for thin ices (i.e. \(x \ll l\)) the desorption rate
become linearly proportional to the ice thickness, and therefore on the
ice abundance. Consequently for thin ices, photo-desorption is a first
order process.

Astrochem follows the ice thickness of each species as a function of
time. The desorption rate is then computed from the above equations,
using the values of \(\chi\), \(r_{d}^2\) and \(n_{d}\) from
the input file, the \(A_{v}\) from the source file, and the
\(Y_{0}\) and \(l\) from the network file.

Using Astrochem

In this section we present a simple example of Astrochem usage. We
propose to use Astrochem to study the formation of the
\(\mathrm{HCO^{+}}\) ion in a dense interstellar cloud. We suppose
that the cloud is isodense and isothermal, and that it is shielded
from the ISRF, so that photo-processes can be ignored. For a sake of
simplicity, we also neglect the freeze-out of molecules on dust
grains. In the following, we describe the various steps needed to
vsolve this problem.

Describing the problem

In order to describe our problem, we first need create an input file
that contains the various parameters the code. This file has several
sections, that set the physical parameters (e.g. the cosmic ionization
rate), the solver parameters (e.g. the initial and final time in the
computation), the initial abundances, and a list of species we want in
output. Some of these parameters are optional; if they are not specified
in the input file, Astrochem will use a default value that should be
suitable for most problems. Here is a what the input file for our
example problem looks like (for a comprehensive description of the
parameters in input files and their default value, see
Input file):

[files]
source = source.mdl
chem = osu2009.chm
Physical paramaters
[phys]
chi = 1.0
cosmic = 1.3e-17
Solver parameters
[solver]
ti = 1e-6
tf = 1e7
Initial abundances
[abundances]
H2 = 0.5
He = 0.14
N = 2.14e-5
O = 1.76e-4
C(+) = 7.30e-5
S(+) = 8.00e-8
Si(+) = 8.00e-9
Fe(+) = 3.00e-9
Na(+) = 2.00e-9
Mg(+) = 7.00e-9
P(+) = 2.00e-10
Cl(+) = 1.00e-9
F = 6.68e-9
e(-) = 7.31012e-5
Output
[output]
abundances = H3(+),e(-),CO,HCO(+)
trace_routes = 1

The various sections of the file are indicated by keywords within
brackets. Lines starting with # are comments. The first section
([files]) indicates the name of the file describing our source
(source), and the chemical network to use (chem). The
following section ([phys]) sets the physical parameters of the
source. Here we set the UV radiation field in Draine units (chi)
to 1.0, and the cosmic ionization rate (cosmic) to \(\mathrm{1.3
\times 10^{-17} \, s^{-1}}\). The solver parameters are set in following
section ([solver]). ti and tf are the initial and final
time for the calculation respectively. Both are expressed in
years. The [abundance] section sets the initial abundances;
abundances that are not specified are set to zero. The last section
([output]) sets parameters relative to the output of the code.
abundances sets the name of the species for which we want to
create output containing the abundances as a function of
time.. trace_route is an optional parameter that allow to trace
the various formation and destruction routes of these species.

In addition to the input file, we need to provide a file describing
our source. The file corresponding to our problem looks like this (for
more information on source model files, see Source file):

Source model file example
cell number, Av [mag], nH [cm^-3], Tgas [K], Tdust [K]
#
0 20.0 1e+04 10.0 10.0

As for the input file, lines that starts with a # are comments. The
file contains one line for each cell of our source. In this simple
example, our source is isodense and isothermal, and therefore there is
only one cell in the our source file. A more realistic source with a
temperature and density gradient would be sampled in more cells.

Each line corresponding to a cell has five columns. The first column
is the index of the cell, the second one is the visual extinction
\(A_{v}\) (in magnitudes), the third one is the number density (in
\(\mathrm{cm^{-3}}\)). and the fourth and the fifth are the gas
and dust temperature respectively (in Kelvins). Note that we have
adopted a large visual extinction (20 magnitudes) because we neglect
photo-processes

Running Astrochem

Astrochem is run from the command line, and takes the name of the input
file as an argument:

% astrochem input.ini
Reading input from input.ini.
Reading source model from source.mdl.
Reading reactions network from osu2009.chm... done.
Found 6046 reactions involving 468 species.
Computing abundances in cell 0...
Done with cell 0.
Writing abundances in output files... done.
Writing formation/destruction in output files... done.
%

Astrochem produces one output file in HDF5 format [http://en.wikipedia.org/wiki/Hierarchical_Data_Format] named
astrochem_output.h5. This file contains different datasets: a list
a output species names, a list of the time steps, a matrix of
abundances of the various species, and if the trace_route
parameter is set to 1, a group of matrices containing the formation
and destruction routes.

Plotting abundances

Astrochem comes with a program that make plots of the abundances
computed by Astrochem. The program, named Plabun, allows to plot the
abundances of one or several species as of function of time in a given
cell. For example, the following command plots the \(\mathrm{CO}\), \(\mathrm{H_{3}^{+}}\), \(\mathrm{e^{-}}\)
and \(\mathrm{HCO^{+}}\) abundances:

% plabun --xrange=1,1e7 --yrange=1e-12,1e-4 astrochem_output.h5 CO H3(+) e(-) HCO

In the example above, we have set the x-axis range from \(1\) to \(\mathrm{10^{7} \, yr}\)

and the y-axis range from \(10^{-12}\) to \(10^{-4}\) with the
--xrange and --yrange options, respectively. The command
above produces the plot shown on Fig. Abundances as a function of time for the example problem.
Plabun has a number or other options, including a legacy mode to read
old output format .abun; see man plabun for a complete list.

[image: Abundances as a function of time for the example problem.]
Abundances as a function of time for the example problem

Identifying the main formation and destruction channels of a species

It is often useful to identify the main formation and destruction routes
of a given species, for example to check that the rate of these main
reactions have been determined accurately (e.g. from experiments) or are
rather uncertain. This also allows to understand how the various species
of a chemical network are linked together.

As already mentioned, if one turns on the trace_route option in
the input file, Astrochem creates a dataset in the
astrochem_output.h5 file that contains the main formation and
destruction routes of the species listed with output option. Of
course these routes may change with time; therefore Astrochem saves
the sixteen most important formation routes as well as the sixteen
most important destruction routes at each time step and position.

A command allows to plot the main formation and destruction rate of a
given species as a function of time or position. For example, one can
plot the main formation and destruction routes of \(\mathrm{HCO^{+}}\)
with the following command (see man plroute for a complete list of
commands and options):

% plroute astrochem_output.h5 HCO(+)

[image: Main :math:`\mathrm{HCO^{+}}` formation and destruction routes as function of time for the example problem.]
Main \(\mathrm{HCO^{+}}\) formation and destruction routes as function of time for the example problem.

which produces the plot shown on Fig. Main formation and destruction routes as function of time for the example problem..

The left panel of the plot shows the formation rate of \(\mathrm{HCO^{+}}\)
(in \(\mathrm{cm^{-3} \, s^{-1}}\)) through the six most important
formation channels [6], together with the total formation rate.
Conversely, the right panel shows the destruction rate of the same
species through the six most important destruction channels as well as
the total destruction rate. On the left panel, we see that for \(t > 10^{5} \, \mathrm{yr}\),
the formation of \(\mathrm{HCO^{+}}\) is dominated by the reaction
of CO with \(\mathrm{H_{3}^{+}}\). On the other hand, at any time
in the simulation the destruction of \(\mathrm{HCO^{+}}\) is
dominated by the dissociative recombination with electrons.

Note that because Astrochem keeps tracks of the sixteen most important
formation or destruction routes at any time only, some gaps may appear
in the plot. This can been seen for the reaction in red on the left
panel of the plot for times between roughly 0.1 and 10 years. In this
time range this reaction is not one the sixteen most important
formation reaction, so Astrochem did not keep track of it in this
time range.

Input and source files

Input file

As mentioned already, the various parameters of Astrochem are read from
an input file. Although this is not mandatory, the file usually has the
.ini file extension. The file has several sections that are
delimited by a keyword within brackets (e.g. [files]). Each section
has a number of parameters that we describe in the following.

Files

This section of the file starts with the [files] keyword, and
specifies which file Astrochem should use for the source description
(.mdl file) and chemical network (.chm file). The parameters
allowed in this section are:

	source

	The name of the file describing the source.

	network

	The name of the chemical network file. Astrochem searches for this
file in the current directory first. If it is not found, it
searches for the file in Astrochem’s data installation directory
(/usr/local/share/astrochem by default).

Physical parameters

This section of the file starts with the [phys] keyword and
specifies the physical parameters of the problem. These parameters are:

	chi

	The external UV radiation field, expressed in Draine unit
(\(\chi\)).

	cosmic

	The cosmic ray ionization rate of molecular hydrogen expressed in \(\mathrm{s^{-1}}\)
(\(\zeta\)). The default value is \(1.3 \times 10^{-17}\).

	grain_size

	The grain radius in microns (\(r_{d}\)). The default value is
0.1.

	grain_gas_mass_ratio

	The grain-to-gas mass ratio. The default value is 0 (no grains).

	grain_mass_density

	The grain mass density, expressed in \(\mathrm{kg \, m^{-3}}\).
The default value is \(3000 \, \mathrm{kg \, m^{-3}}\), which
corresponds to olivine grains.

Solver parameters

This section of the file starts with the [solver] and specifies the
ODE solver parameters. These parameters are:

	ti

	The initial time for the computation, expressed in years. The
default value is \(10^{-6}\).

	tf

	The final time for the computation, expressed in years. The
default value is \(10^{7}\).

	abs_err

	The solver absolute error (or tolerance) on the computed
abundances. The default value is \(10^{-20}\).

	rel_err

	The solver relative error on the computed abundances.
The default value is \(10^{-6}\).

A note on tolerances: Astrochem adjusts the internal time step so that
the relative error on any abundance is always lower that rel_err,
unless the given abundance is lower that abs_err. Because errors on
the abundances at each time step may add-up, we recommend to chose these
errors quite conservatively. The default values should be suitable for
most problems.

Initial abundances

This section specifies the initial abundances in the computation. Each
line should contain a specie name followed by a equal sign and the
initial abundance with respect to H nuclei. The initial abundances of
species that are not listed in this section are assumed to be
zero.

Note

Starting from version 0.7, the grain abundance is computed from the
grain parameters (see Physical parameters). Setting the
grain abundance explicitly in this section is deprecated.

Output

This section specifies what file Astrochem should create at the end of
the computation. These parameters are:

	output

	A list of species for which Astrochem creates an output file
containing the abundance as a function of time and
position. Species names must be separated by a comma. The all
keyword may be used to have all species of the network in output.

	suffix

	A suffix to append to the name of the species before the file
extension (.h5) of the output file. This is useful when you
want to run Astrochem for a number of different input files all
located in the same directory; this way the results of a given
simulation will not be overwritten by the results of others. A
leading underscore is added to this suffix.

	time_steps

	The number of time steps in output the files [7]. The default value
is 32. Note that this parameter only affects the number of time
steps in the output file. The internal time step size is set by
the ODE solver in order to reach the specified absolute and
relative errors on the abundances.

	trace_routes

	This parameter is used to toggle the computation of the major
formation and destruction routes for all species listed with the
output parameter. If trace_route is set to 1, Astrochem
will create a file containing the formation/destruction rate and
reaction number of the 16 most important formation/destruction
reaction for each specie, as a function of time and position
(i.e. cell number). As for abundance files, file names for
formation and destruction routes are formed with the species name
possibly followed by a suffix (see below) and the .rout file
extension.

Source file

Astrochem reads the physical parameters (density, temperature, visual
extinction) of the astronomical source in a source file. This file can
be of two formats, depending on whether the source physical parameters
vary as a function of time or not.

Time-independent physical parameters

This type of source file is used to describe astronomical source in
which the physical parameters do not change with time, or change on
timescales longer than the chemical timescales. Although the source may
have in principle any dimension, Astrochem is, for the moment, designed
to study 1D spherical sources in an external radiation field only (such
as a dense cloud or a prestellar core in the ISRF). Future versions will
allow to study 2D sources with axisymmetrical geometries, such as
protoplanetary disks.

In order to construct a time-independent source model file, one needs to
sample the astronomical source in a number of spherical cells (or
shells) at different source radius. What constitutes a good sampling
depends on the source. Often density profiles of astronomical sources
are well described by a power laws, so it is usually a good idea to
sample the source in a number of logarithmically spaced cells. Of
course, the larger number of cells, the longer computational time.
However, Astrochem may be run in parallel on multi-core computers in
order to reduce the computational time (see
section Running Astrochem in parallel).

Each line of the file corresponds to a different cell, while each column
corresponds to a different parameter. These parameters are, from the
leftmost to the rightmost columns:

	The cell index. This is an integer that is used to identify each
cell. The first index should be 0. Other indexes in the file should
be in increasing order. All cells should have a different index.

	The visual extinction in the cell, expressed in magnitudes.

	The H nuclei density in the cell, expressed in \(\mathrm{cm^{-3}}\).

	The gas temperature in the cell, expressed in K.

	The dust temperature in the cell, expressed in K.

	The radius corresponding to the cell, expressed in astronomical units
(AU). This optional parameter is used for bookkeeping only; Astrochem
ignores it.

Columns may be separated by any number of white spaces or tabs. Comments
may written in the source file; comment lines must start with a #
sign.

Time-dependent physical parameters

This type of source file is used to describe an astronomical source in
which the physical parameters vary as a function of time, for example a
protostar that undergoes gravitational collapse. In this case, the
physical parameters (density, temperature), may come from theoretical
prescriptions or from numerical simulations.

In order to construct this kind of model, one need to sample the source
in a number of different cells that follow the dynamical evolution of
the object as a function of time. These could correspond to the smooth
particles from a SPH simulation, or the buoy particles from an
adaptive mesh refinement (AMR) (magneto)hydrodynamical simulation. The
source needs to be properly sampled both spatially and temporally.
Indeed, Astrochem assumes that the physical parameters in each cell
remain constant within each time step [8]. Therefore this time step
should be sufficiently small so that the physical parameters do not vary
significantly between two time steps.

Time-dependent source models have two sections, which are separated by
keywords in brackets. The first one contains the times, expressed in
years, and starts with the [times] keyword.

Source model file example for a time-dependant source structure
[times]
 0 1.00e-06
 1 1.27e-06
 2 1.60e-06
 3 2.03e-06
 4 2.57e-06
(...)
 126 7.90e+06
 127 1.00e+07

The number on the first column is the time index, which must start at 0.
The second column contains the time, expressed in years. In this
example, the time on the first line is \(10^{-6}\) years. This
corresponds to the time at the end of the computation of the first time
step; in other words, the time step #0 is between \(t = 0\) and
\(t = 10^{-6}\) years. Likewise, the time step #127 is between
\(7.9 \times 10^{6}\) and \(10^{7}\) years, at which time the
computation ends.

The second part of the file contains the physical parameters of each
cell at each time step. This section must start with the [cells]
keyword, followed by the physical properties of the first cell.

cell number, time index, Av [mag], nH [cm^-3], Tgas [K], Tdust [K]
[cells]
 0 0 20.00 1.00e+04 10.00 10.00
 0 1 20.00 1.04e+04 10.00 10.00
 0 2 20.00 1.08e+04 10.00 10.00
(...)
 0 127 20.00 1.00e+06 10.00 10.00
 1 0 20.00 1.00e+05 10.00 10.00
(...)
 1 127 20.00 1.00e+07 10.00 10.00

The columns in this section are:

	The cell index, starting at 0.

	The time index.

	The visual extinction in the cell, expressed in magnitudes.

	The hydrogen density, in \(\mathrm{cm^{-3}}\).

	The gas temperature, in Kelvins.

	The dust temperature, in Kelvins.

Each line correspond to a different time step. In this example, the
first cell (#0) has a density of \(\mathrm{10^{4} \, cm^{-3}}\)
and a temperature of 10K during the first time step (#0),
i.e. between \(t = 0\) and \(t = 10^{-6}\) years. During the
last time step (#127), this cell has a density of \(\mathrm{10^{6} \, cm^{-3}}\)
and a temperature of 10 K.

Any number of cells may be given in the file. The physical parameters of
the second cell (#1), directly follows that of the first one. For
example, the second cell (#1) has a density of \(\mathrm{10^{4} \, cm^{-3}}\)
and a temperature of 10 K during the same
time step (#0). Note that all cells must have the same time steps.

Chemical networks

Astrochem reads the chemical reactions and their rate coefficient from a
chemical network file. This file should have .chm extension. Several
networks are distributed with Astrochem, but the user may also write its
own network. In the following, we describe the networks files that are
distributed with Astrochem, as well as the format of these files.
Finally, we explain how networks in other formats can be converted to
Astrochem format.

Networks provided with Astrochem

The following networks are provided with Astrochem:

	osu2009.chm

	This network file contains the reactions and rates from the Ohio
State University (OSU) astrochemistry database, that is maintained
by Eric Herbst. It corresponds to the January 2009 version of the
database. This network contains 6046 reactions and 468 species,
including anions.

	osu2008.chm

	This network file contains the September 2008 version of OSU
database. It includes 4457 reactions and 452 species (no anions).

These networks can be found in the network directory of the source
distribution. When installing Astrochem, they are copied in the data
installation directory (/usr/local/share/astrochem by default).

Network file format

Astrochem network file format is meant to be easily read and edited.
Therefore chemical reactions in this files are written as you would
write them on a piece of paper. Here is an example of a (incomplete)
network file:

A few reactions extracted from osu2008.chm
H + H -> H2 4.95e-17 5.00e-01 0.00e+00 0 1
H2 + cosmic-ray -> H2(+) + e(-) 9.30e-01 0.00e+00 0.00e+00 1 39
H3(+) + CO -> HCO(+) + H2 1.61e-09 0.00e+00 0.00e+00 2 1756
H3(+) + e(-) -> H + H + H 4.36e-08 -5.20e-01 0.00e+00 9 3746
CO + uv-photon -> C + O 3.10e-11 0.00e+00 2.54e+00 13 4297
(...)

As for input and model files, lines that starts with the # character
are comments. Each line of the file corresponds to a different reaction.
Lines have two parts: the chemical equation, and a list of five numbers
that correspond to the rate constants, reaction type and reaction
number.

The chemical equation is composed of one, two or three reactants, and
one, two, three or four products. Each reactants and products are
separated by a white space, a + sign, and another white space. To
disentangle the + sign between reactants from the ones
corresponding to ions, ion charge must be put in parenthesis: for
example, the \(\mathrm{HCO^{+}}\) ion must be written as
HCO(+) in the network file. Reactants and products are separated
by a white space, an arrow (->), and another white space.

In general, Astrochem computes the formation rate of each product (or
the destruction rate of each reactant) through a given reaction by
multiplying the reaction rate by the product of the reactants. For
example, for the reaction:

H3(+) + e(-) -> H + H + H 4.36e-08 -5.20e-01 0.00e+00 9 3746

the destruction rate of \(\mathrm{H_{3}^{+}}\) and \(e^{-}\) is
computed as:

\[\frac{d {n(\mathrm{H_{3}^{+}})}}{dt} = \frac{d
 {n(\mathrm{e^{-}})}}{dt} = - k \, {n(\mathrm{H_{3}^{+}})} \,
 {n(\mathrm{e^{-}})}\]

while the formation rate of H is computed as:

\[\frac{d {n(\mathrm{H})}}{dt} = k \, {n(\mathrm{H_{3}^{+}})} \,
{n(\mathrm{e^{-}})}\]

In other words, single body reactions (e.g. cosmic-ray ionization, or
UV ionization) are assumed to have a first order kinetics, two body
reactions are assumed to have a second order kinetics, etc. However,
there are two exceptions to this rule. First the formation of \(\mathrm{H_{2}}\)

on the grains is assumed to be of the first order (see
 formation on grains). Second, UV photodesorption is assumed to
have a zeroth order kinetics when the ice thickness is large enough
(see Photo-desorption).

Several reactants and products are not bona fide chemical species, but
are just meant to make the reading of the network easier. These
pseudo-species are cosmic-ray (for cosmic-ray direct or indirect
ionization or desorption reactions), uv-photon (for
photo-ionization, photo-dissociation and photo-desorption reactions) and
photon (for radiative association reactions). All of these are
ignored by Astrochem.

The five numbers following the products are the three rate constants
(that we note \(a\), \(b\) and \(c\) respectively), the
reaction type, and the reaction number. The reaction type is a signed
integer that identifies the kind of the reaction (e.g. ion-molecule,
dissociative recombination, etc.). Table Reaction type numbers lists
the various reaction types together corresponding type numbers [9].
The reaction number is an integer that identify each reaction in a
unique fashion: every reaction must have a different number. Reaction
numbers must start at 1, but they are not necessarily contiguous. For
example you may want to identify gas-phase reactions by numbers between
1 and 6046, and gas-grain reactions by numbers starting at 10000.

Reaction type numbers

 Astrochem C API reference

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Astrochem 0.7-beta documentation

Astrochem C API reference

This document gives a comprehensive list of the types and
functions that are defined in Astrochem C
API. These types and functions are defined in the libastrochem.h
header file. For an example of how to use the C API, see
calling Astrochem from C.

Types

	
astrochem_mem_t

	Astrochem memory structure

	
cell_t

	Structure containing the parameters of a gas cell

	
double av

	Visual extinction in the cell, in magnitudes

	
double nh

	H nuclei density in the cell, in \(\mathrm{cm^{-3}}\)

	
double tgas

	Gas temperature in the cell, in K

	
double tdust

	Dust temperature in the cell, in K

	
net_t

	Structure containing a chemical network

	
int n_species

	Number of species in the network

	
int n_alloc_species

	Number of allocated species in the network structure

	
species_t *species

	Structure containing the species in the network

	
int n_reactions

	Number of reactions

	
react_t *reactions

	Structure containing the reactions in the network

	
phys_t

	
Structure containing the physical parameters

	
double chi

	External UV radiation field, in Draine units

	
double cosmic

	Cosmic ray ionization rate of molecular hydrogen, in \(\mathrm{s^{-1}}\)

	
double grain_size

	The grain radius, in micron

	
double grain_abundance

	The grain abundance

	
double grain_gas_mass_ratio

	The grain-to-gas mass ratio

	
double grain_mass_density

	The grain mass density in \(\mathrm{kg \, m^{-3}}\)

Functions

	
int alloc_abundances(const net_t*network, double**abundances)

	Allocate an array to store the abundances for all species in a
network

	Parameters:	
	network (net_t*) – Network structure

	abundances (double**) – Pointer on the abundance array

	Returns:	EXIT_SUCCESS if the allocation was successful, EXIT_FAILURE otherwise

	
void free_abundances(double*abundances)

	Free the array containing the abundances

	Parameters:	
	abundances (double**) – Pointer on the abundance array

	
int set_initial_abundances(const char**species, intn_initialized_abundances, const double*initial_abundances, const net_t*network, double*abundances)

	Set the initial abundances

	Parameters:	
	species (char**) – Array containing the species name

	n_initialized_abundances (int) – Number of initial abundances

	initial_abundances (double*) – Array containing the initial abundances

	network (net_t*) – Network structure

	abundances (double*) – Array containing the abundances of all species

	Returns:	0

	
int solver_init(const cell_t*cell, const net_t*network, const phys_t*phys, const double*abundances, doubledensity, doubleabs_err, doublerel_err, astrochem_mem_t*astrochem_mem)

	Initialize the solver

	Parameters:	
	cell (cell_t*) – Cell structure

	network (net_t*) – Network structure

	phys (phys_t*) – Physical parameters structure

	abundances (double*) – Array containing the abundances of all species

	density (double) – Initial density, in \(\mathrm{cm^{-3}}\)

	abs_err (double) – Solver absolute error on the abundances

	rel_err (double) – Solver relative error on the abundances

	astrochem_mem (astrochem_mem_t*) – Astrochem memory structure

	Returns:	0 if the initialization was successful, -1 otherwise.

	
int solve(astrochem_mem_t*astrochem_mem, const net_t*network, double*abundances, doubletime, const cell_t*new_cell, intverbose)

	Solve the system of ODE

This function solve the system of ODE up to a given time, and
update the abundance array. If the physical parameters in the gas
cell have changed since the last call, a pointer to cell structure
must be passed to the function; if not, a null pointer must be
passed instead.

	Parameters:	
	astrochem_mem (astrochem_mem_t*) – Astrochem memory structure

	network (net_t*) – Network structure

	abundances (double*) – Array containing the abundances of all species

	time (double) – Time, in seconds

	new_cell (cell_t*) – New cell structure if the physical parameters have changed since the last call

	verbose (int) – Verbosity (0 for quiet, 1 for verbose)

	Returns:	0

	
void solver_close(astrochem_mem_t*astrochem_mem)

	Close the solver

	Parameters:	
	astrochem_mem (astrochem_mem_t*) – Astrochem memory structure

	
int read_network(const char*chem_file, net_t*network, const intverbose)

	Read a chemical network

This function reads a chemical network in Astrochem format (.chm)
and creates a network structure containing all the reactions.

	Parameters:	
	chem_file (char*) – Network filename

	network (net_t*) – Network structure

	verbose (int) – Verbosity (0 for quiet, 1 for verbose)

	Returns:	EXIT_SUCCESS after a successful call, EXIT_FAILURE otherwise

	
void free_network(net_t *network)

	Free a chemical network structure

	Parameters:	
	network (net_t*) – Network structure

 Copyright 2015, Sébastien Maret.
 Created using Sphinx 1.3.1.

 Astrochem Python Module reference

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Astrochem 0.7-beta documentation

Astrochem Python Module reference

This documents gives a description of Astrochem Python module. The
module itself contains two packages: the tool package, which allows to work on chemical
networks and astrochem output files and wrapper package , which allows to run Astrochem
from Python. For an example on how to do this, see calling
Astrochem from Python

Tools (astrochem.tools)

Various tools for Astrochem.

	
tools.converttolegacy(filename, specie)

	Convert a hdf5 output file specific species to .abun and .rout legacy format.

	Parameters:	
	filename (str) – Path to the output file

	species (str) – Name of specie to read abundance and route of

	
tools.listspecies(filename)

	Print available species from an hdf5 output file and return it in a array

	Parameters:	filename (str) – Path to output file.

	Returns:	Species list

	Return type:	list if str

	
class tools.network_reader(reactions)

	Chemical network reader class.

	
__repr__()

	Returns the string representation of a network.

	Returns:	The string representation of the network.

	Return type:	str

	
duplicate_react_numbers()

	Find reactions with the same reaction number.

	Returns:	List of duplicated reaction_numbers.

	Return type:	list of str

	
duplicate_reactions()

	Find duplicate reactions.

	Returns:	List of reaction_numbers of duplicated reactions.

	Return type:	list of int

	
static fromfile(f, fileformat)

	Read a network from a file.

This function reads a chemistry network from a file and
creates a network instance. Supported formats are chm, osu and
kida.

	Parameters:	
	f (file) – Network file

	fileformat (str) – Network file format (“chm”, “osu” or “kida”)

	Returns:	Network

	Return type:	network_reader

	
getreact(number)

	Returns the reaction with a given number.

	Parameters:	number (int) – The reaction number.

	Returns:	The reaction found.

	Return type:	reaction

	Raises:	ValueError –
If no reaction with this number if found.

	
tofile(f, renumber=False)

	Write network in a file.

	Parameters:	
	f (file) – Network file handle

	renumber (bool, optional) – Renumber reactions (default False)

	
class tools.reaction(reactants, products, alpha, beta, gamma, rtype, rnumber)

	Chemical reaction class.

	
reactants

	list of str

List of reactants.

	
products

	list of str

List of products.

	
alpha

	float

Reaction constant.

	
beta

	float

Reaction constant.

	
gamma

	float

Reaction constant.

	
rtype

	int

Reaction type.

	
rnumber

	int

Reaction number.

	
__eq__(other)

	Compares the reaction with another.

This method compares two reactions. The reactions are supposed
to be equal if both the reactants and products are equal,
regardless of the reaction rates.

	Parameters:	other (reaction) – Reaction instance to compare with.

	Returns:	True if the reactions are equal, False otherwise.

	Return type:	bool

	
__repr__()

	Returns the string representation of a reaction.

	Returns:	The string representation of the reaction.

	Return type:	str

	
totex()

	Returns a reaction in TeX format.

	Returns:	TeX formated reaction string.

	Return type:	str

	
tools.readabun(filename, specie)

	Read abundances for a specific specie from an hdf5 output file and
return arrays of time and abundances

	Parameters:	
	filename (str) – Path to the output file

	specie (str) – Name of specie to read abundance of

	Returns:	
	timesteps (list of float) –
List of timesteps

	abundance (list of float) –
List of abundances

	
tools.readabunlegacy(filename)

	Read an abund file and return arrays of time and abundances.

	Parameters:	filename (str) – Path to the abund file.

	Returns:	
	timesteps (list of floats) –
List of timesteps

	abundances (list of floats) –
List of abundances

	
tools.readfilesattrs(filename)

	Read chem_file and source_file attributes from an hdf5 output file

	Parameters:	filename (str) – Path to output file.

	Returns:	
	chemfile (str) –
chem_file attribute

	sourcefile (str) –
source_file attribute

	
tools.readrout(filename, specie)

	Read a rout from a hdf5 output file and return arrays of time, shell number, formation/destruction rates.

	Parameters:	
	filename (str) – Path to the output file.

	specie (str) – Name of specie to read route of.

	Returns:	
	timesteps (list of float) –
List of timesteps.

	shells (list of float) –
List of shell numbers.

	formation_reac (list of reaction) –
List of formation reactions.

	formation_rate (list of float) –
List of formation rates.

	destruction_reac (list of reaction) –
List of destruction reactions.

	destruction_rate (list of float) –
List of destruction rates.

	
tools.readroutlegacy(filename)

	Read a rout file and return arrays of time, cell number,
formation/destruction rates

	Parameters:	filename (str) – Path to the output file.

	Returns:	
	timesteps (list of float) –
List of timesteps.

	shells (list of float) –
List of shell numbers.

	formation_reac (list of reaction) –
List of formation reactions.

	formation_rate (list of float) –
List of formation rates.

	destruction_reac (list of reaction) –
List of destruction reactions.

	destruction_rate (list of float) –
List of destruction rates.

Wrapper (astrochem.wrapper)

Python wrapper for libpyastrochem.

	
class wrapper.cell(av, nh, tgas, tdust)

	Cell class.

	
av

	float

Visual extinction in magnitudes.

	
nh

	float

Hydrogen density in cm^-3.

	
tgas

	float

Gas temperature in K.

	
tdust

	float

Dust temperature in K.

	
class wrapper.network(chem_file, verbose)

	Network class.

	
chem_file

	str

File containing a network to load.

	
verbose

	int

Verbose if 1, Quiet if 0.

	
class wrapper.phys

	Physical parameters to use in chemical reaction solver.

	
chi

	float

Chi physical property.

	
cosmic

	float

Cosmic physical property.

	
grain_abundance

	float

Grain Abundance physical property.

	
grain_size

	float

Grain Size physical property.

	
class wrapper.solver(cell, chem_file, phys, abs_err, rel_err, initial_abundances, density, verbose)

	Chemical reaction solver.

	
cell

	cell

Chemical cell class to use in solver.

	
chem_file

	str

Chemical network file string to load network from and use in solver.

	
phys

	phys

Physical properties class to use in solver.

	
abs_err

	float

Absolute acceptable error to use in solver.

	
rel_err

	float

Relative acceptable error to use in solver.

	
initial_abundances

	dict

Initial abundances (format {Species:Value}).

	
density

	float

Density to use in solver.

	
verbose

	int

verbose if 1, quiet if 0.

	
solve(time, new_cell)

	Solve chemical reaction for a certain time

	Parameters:	
	time (float) – Time to solve the system at

	new_cell (cell) – Cell class to use in solver, optionnal

 Copyright 2015, Sébastien Maret.
 Created using Sphinx 1.3.1.

 Python Module Index

 Navigation

 	
 index

 	
 modules |

 	Astrochem 0.7-beta documentation

 Python Module Index

 t |
 w

 			

 		
 t	

 	
 	
 tools	

 			

 		
 w	

 	
 	
 wrapper	

 Copyright 2015, Sébastien Maret.
 Created using Sphinx 1.3.1.

 Index

 Navigation

 	
 index

 	
 modules |

 	Astrochem 0.7-beta documentation

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | I
 | L
 | N
 | P
 | R
 | S
 | T
 | V
 | W

_

 	

 	__eq__() (tools.reaction method)

 	

 	__repr__() (tools.network_reader method)

 	

 	(tools.reaction method)

A

 	

 	abs_err (wrapper.solver attribute)

 	alloc_abundances (C function)

 	alpha (tools.reaction attribute)

 	

 	astrochem_mem_t (C type)

 	av (wrapper.cell attribute)

B

 	

 	beta (tools.reaction attribute)

C

 	

 	cell (class in wrapper)

 	

 	(wrapper.solver attribute)

 	cell_t (C type)

 	cell_t.av (C member)

 	cell_t.nh (C member)

 	cell_t.tdust (C member)

 	

 	cell_t.tgas (C member)

 	chem_file (wrapper.network attribute)

 	

 	(wrapper.solver attribute)

 	chi (wrapper.phys attribute)

 	converttolegacy() (in module tools)

 	cosmic (wrapper.phys attribute)

D

 	

 	density (wrapper.solver attribute)

 	duplicate_react_numbers() (tools.network_reader method)

 	

 	duplicate_reactions() (tools.network_reader method)

F

 	

 	free_abundances (C function)

 	free_network (C function)

 	

 	fromfile() (tools.network_reader static method)

G

 	

 	gamma (tools.reaction attribute)

 	getreact() (tools.network_reader method)

 	

 	grain_abundance (wrapper.phys attribute)

 	grain_size (wrapper.phys attribute)

I

 	

 	initial_abundances (wrapper.solver attribute)

L

 	

 	listspecies() (in module tools)

N

 	

 	net_t (C type)

 	net_t.n_alloc_species (C member)

 	net_t.n_reactions (C member)

 	net_t.n_species (C member)

 	net_t.reactions (C member)

 	

 	net_t.species (C member)

 	network (class in wrapper)

 	network_reader (class in tools)

 	nh (wrapper.cell attribute)

P

 	

 	phys (class in wrapper)

 	

 	(wrapper.solver attribute)

 	phys_t (C type)

 	phys_t.chi (C member)

 	phys_t.cosmic (C member)

 	phys_t.grain_abundance (C member)

 	

 	phys_t.grain_gas_mass_ratio (C member)

 	phys_t.grain_mass_density (C member)

 	phys_t.grain_size (C member)

 	products (tools.reaction attribute)

R

 	

 	reactants (tools.reaction attribute)

 	reaction (class in tools)

 	read_network (C function)

 	readabun() (in module tools)

 	readabunlegacy() (in module tools)

 	readfilesattrs() (in module tools)

 	

 	readrout() (in module tools)

 	readroutlegacy() (in module tools)

 	rel_err (wrapper.solver attribute)

 	rnumber (tools.reaction attribute)

 	rtype (tools.reaction attribute)

S

 	

 	set_initial_abundances (C function)

 	solve (C function)

 	solve() (wrapper.solver method)

 	

 	solver (class in wrapper)

 	solver_close (C function)

 	solver_init (C function)

T

 	

 	tdust (wrapper.cell attribute)

 	tgas (wrapper.cell attribute)

 	tofile() (tools.network_reader method)

 	

 	tools (module)

 	totex() (tools.reaction method)

V

 	

 	verbose (wrapper.network attribute)

 	

 	(wrapper.solver attribute)

W

 	

 	wrapper (module)

 Copyright 2015, Sébastien Maret.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Astrochem 0.7-beta documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

